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Abstract
Wavelets offer significant advantages for the analysis of problems in quantum mechanics. Because 

wavelets are localized in both time and frequency they avoid certain subtle but potentially fatal conceptual 
errors that can result from the use of plane wave or δ function decomposition. Morlet wavelets are 

particularly well-suited for this work: as Gaussians, they have a simple analytic form and they work well 
with Feynman path integrals. To take full advantage of Morlet wavelets we need an explicit form for the 
inverse Morlet transform and a manifestly covariant form for the four-dimensional Morlet wavelet. We 

supply both here.

In theory, theory and practice are the same. In practice they are not. – A. Einstein

Introduction
Wavelet transforms represent a natural development of Fourier transforms and may be used for similar purposes. 
Where the Fourier transform lets us decompose a wave function into its component plane waves, a wavelet 
transform lets us decompose a wave function into its component wavelets. If we think of the plane waves as 
corresponding to pure tones, we may think of the wavelets as corresponding to the notes produced by physical 
instruments: of finite duration and spanning a finite range of tones.
Wavelets have two advantages over plane waves:

1. They are localized in time and frequency. This can make them a better fit to the wave forms found in 
nature, which are always localized in both time and frequency. As a result, wavelet series will often 
converge faster than corresponding Fourier series.

2. There are many different wavelets to choose from: we can tailor our wavelets to our problem.
These advantages have resulted in their application to a wide variety of practical problems in acoustics, astronomy, 
medical imaging, computer graphics, meteorology, and so on1.
Wavelets also have significant – if less numerous – application on the theory side. Examples: canonical quantization 
of the electromagnetic field using a discrete wavelet basis (Havukainen 2006), analysis of localization properties of 
photons using windowed wavelets (Kim 1996), regularization of Euclidean field theories (Altaisky 2003), and use of 
wavelets to provide “Lorentz covariant, singularity-free, finite energy, zero action, localized solutions to the wave 
equation” (Visser 2003).
Wavelets offer significant benefits for the study of foundational questions in quantum mechanics as well. We will 
focus here specifically on Morlet wavelets. These are Gaussians, so are both easy to work with and a natural fit to 
path integrals, which typically consist of long series of Gaussian integrations. Use of Morlet wavelets can let us:

1. Avoid any need to invoke the notorious “collapse of the wave function” in the analysis of the Stern-Gerlach 
experiment,

2. Avoid the use of artificial convergence factors or Wick rotation in computing path integrals,
3. Compute path integrals in a time symmetric way.

But to prepare Morlet wavelets for their new responsibilities we need to:
1. Supply an explicit form for the “admissibility constant” discussed below. This is needed to define the 

inverse Morlet transform.
2. Provide a manifestly covariant extension of Morlet wavelets to four dimensions.
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Morlet's original reference is (Morlet, Arens et al. 1982). Wavelets are discussed in: (Chui 1992; Meyer 1992; Kaiser 
1994; van den Berg 1999; Addison 2002; Bratteli and Jørgensen 2002; Antoine, Murenzi et al. 2004). Path integrals 
are discussed in: (Feynman and Hibbs 1965; Schulman 1981; Swanson 1992; Khandekar, Lawande et al. 1993; 
Marchewka and Schuss 2000; Kleinert 2004; Zinn-Justin 2005).
Measurements, path integrals, and time
Stern-Gerlach experiment
In the original Stern-Gerlach experiment (Gerlach and Stern 1922; Gerlach and Stern 1922; Gerlach and Stern 1922) 
a beam of silver atoms is sent through an inhomogeneous magnetic field. The beam is split into two: those atoms 
with spin up getting a kick in one direction; those with spin down in the opposite. This was striking both because it 
demonstrated the existence of spin and because a classical system would have shown a continuous range of values 
for the spin, not just up and down. This split is regarded as a classic demonstration of the measurement problem, 
explained – in the Copenhagen interpretation (von Neumann 1955) – by the “collapse of the wave function” into up 
and down components, and gotten much attention since.
Typically the initial wave function is modeled as a plane wave times a spin vector. But recently Gondran and 
Gondran (Gondran and Gondran 2005) have shown that if you model the initial wave function of the silver atom as a 
Gaussian, and turn the crank on the Schrödinger equation, you see the spin up and spin down components separate 
without any need to invoke a “collapse”. It works a bit like a diffraction experiment: there is coherent interference at 
two spots, incoherent at the rest. One may think of this as an internal diffraction effect.
Gondran and Gondran intended their work at least partly in support of the Bohm interpretation, however the math is 
independent of the interpretation. Standard quantum mechanics – if done in sufficient detail, i.e. with Gaussian test 
functions rather than plane waves – can explain the Stern-Gerlach effect without further assistance.
The use of a single Gaussian test function is not of itself general. But with the use of the Morlet wavelet transform 
we can write an arbitrary square-integrable wave function as a sum over Gaussian test functions, making the 
Gondran and Gondran result completely general.
To be sure, we could attempt to restore the honor of the plane wave by arguing that we could build up a Gaussian 
test function as a sum over such. But then why not “eliminate the middleman” and start with Gaussian test 
functions?
I am aware of several related examinations of the Stern-Gerlach effect2. Cruz-Barrios and Gómez-Camacho (Cruz-
Barrios and Gómez-Camacho 1998; Cruz-Barrios and Gómez-Camacho 2001) argued that if the atoms could be 
modeled using “coherent internal states” (CIS), we would see the effect. And Venugopalan et al (Venugopalan, 
Kumar et al. 1995; Venugopalan 1997; Venugopalan 1999) argued we would see the effect as an effect of 
decoherence. The Gondran and Gondran result is simpler in that it posits no additional structure (CIS) or additional 
interaction (decoherence); standard quantum mechanics of its own gives the effect.
Convergence of path integrals
Morlet wavelets can assist in establishing convergence of Feynman path integrals without recourse to convergence 
factors as used in (Feynman and Hibbs 1965; Schulman 1981) or Wick rotation as in (Zinn-Justin 2005); 
convergence of the slice-by-slice integrals in the path integral is a side-effect of the initial wave function being a 
(sum of) Gaussians, for which convergence is automatic. Step by step in the free case:

1. We start with the free Schrödinger equation:
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3. A typical integral is:
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quant-ph/0301016.



Where ε is the width of a time slice:

ε ≡ τ
N

4. The typical integral does not converge. We can force convergence by adding a small imaginary part iσ to 
the mass:
m→ m + iσ .

 We could also add the small imaginary part to the time step ε or Wick rotate into imaginary time: 
t→ it .

5. Now, focus attention on the first step:

 
ψ 1
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x0( )∫
6. Assume the initial wave function is a Gaussian:
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This integral is convergent of itself. The result is a (slightly wider) Gaussian. We can do an infinite series of 
these, with the initial wave function showing an increasing amount of middle-aged spread but with all of 
the integrals converging.
As an arbitrary wave function may be written, via Morlet wavelets, as a sum over Gaussian test functions, 
we have convergence in the general case3, without the introduction of artificial convergence factors. 

This by no means eliminates all of the technical problems with path integrals; for instance, there is still the curious 
question of the mid-point rule, as discussed in (Schulman 1981). But one step at a time.
Symmetric analysis of time in path integrals
One immediate benefit of not needing convergence factors or Wick rotation is that we can treat time in a more 
symmetric way. One case where we might want to do this is in setting up a path integral analysis of the Stückelberg-
Schrödinger equation:

i
dψ u x( )
du

= Hψ u x( )
Here u is a formal parameter – a scalar of some kind, perhaps the particle’s proper time -- and H is a Lorentz 
invariant Hamiltonian. There are examples in Feynman (Feynman 1950; Feynman 1951) and more recently in work 
by Land, Horwitz, and Seidewitz (Land and Horwitz 1996; Horwitz 1998; Seidewitz 2005). This approach has been 
sufficiently interesting that there is an ongoing conference devoted to this & related questions: (Gill, Horwitz et al. 
2010).
In the free case H might be given by:
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Note that because of the Lorentz invariance the time and space parts enter into H with opposite sign, so in the path 
integral will have a problem converging in a Lorentz covariant way:

1. Path integral form for the kernel:
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Note the pre-factor from the time part is slightly different from that for space:
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3 I have elided some technical difficulties here; discussed at (much) greater length in a work in progress Ashmead, J. (2009). 
Quantum Time. Philadelphia.
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2. A typical slice:
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3. But now the addition of a small imaginary part to mass or time fails; any change that causes the time 
integrals to converge will cause the space integrals to diverge and vice versa. If we use different signs for 
time and space, then we break covariance.

4. Wick rotation fails for the same reason. No matter which sign we choose for the Wick rotation, either the 
past or the future side will blow up.

5. Again, look at the first step:
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6. Assume our initial wave function is given by a Gaussian test function:
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7. Again, the integrals converge step by step. As any square-integrable wave function may be written as a sum 
over such (see below) we have convergence. Of course to do this, we need covariant Morlet wavelets (see 
further below).

In many cases, an asymmetric treatment of time is harmless. But if we are analyzing time itself, then we do not want 
to wire the assumption that it is asymmetric into the maths. To do so would result in circular reasoning (see Price for 
an amusing discussion: (Price 1991)). The use of small imaginary factors/Euclidean time/Wick rotation will not 
work for analyses that are of time itself, as such approaches implicitly prejudge the conclusion.
Morlet wavelets in one dimension

ϕ t( ) = e
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Mother Morlet wavelet, with f = 1
To generate a set of wavelets we start with a mother wavelet ϕ t( ) . We get the general wavelet ϕ sd t( )  by scaling 

the mother wavelet by a scale factor s and displacing her by a displacement d:

ϕ sd t( ) ≡ 1
s
ϕ t − d

s
⎛
⎝⎜

⎞
⎠⎟

.
As with life, so with wavelets: correct choice of your mother is essential for success. For Morlet wavelets the mother 
wavelet is given by:
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ϕ t( ) ≡ e− ift − e
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.
The second term is needed to satisfy the admissibility condition, discussed below. t is often the time and f may be 
thought of as a reference frequency.
As f goes to infinity, the second term becomes less and less relevant – in many practical applications it is dropped 
(see for instance (Johnson 2009)). At the other extreme, when f is zero, the mother wavelet is zero. We keep f a 
variable to help in calculating the value of the admissibility constant Cf.
The general Morlet wavelet is created from the mother Morlet wavelet by scaling by s and displacing by d:
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Both scale and displacement run from -∞ to ∞. A negative scale just gives the complex conjugate of the Morlet 
wavelet with positive scale:

ϕ− s,d t( ) = ϕ s,d
* t( ) .

The mother Morlet wavelet herself is given in this notation as the Morlet wavelet with scale factor one, displacement 
zero:

ϕ t( ) = ϕ1,0 t( ) .
Any square integrable function ψ may be expressed as a sum over Morlet wavelets. In principle this excludes δ 
functions and plane waves. We will see below that they are handled correctly however. The Morlet wavelet 
transform of a wave function ψ (Morlet wavelet transform of ψ) is given by:
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−∞

∞

∫
.

We get the original ψ back (inverse Morlet wavelet transform of ψ) by integrating over the displacement and scale:
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The admissibility constant is given by an integral over the square of the Fourier transform of the mother wavelet:

Cf ≡ 2π
dw
w

ϕ̂ w( ) 2
−∞

∞

∫
.

In the general case we could use a different set of wavelets for the forward and the inverse transforms; it is one of 
the attractions of Morlet wavelets that we do not need to do this.
The wavelet decomposition fails if Cf is not finite. For Cf to be finite, we see we need the zero frequency component 
of the Fourier transform of the Morlet wavelet mother to be zero:
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but may be written in terms of the Fourier transform of the mother:
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ϕ̂ sd w( ) = s eidwϕ̂ sw( )
.

Normalization
Morlet wavelets are not wave functions, but do not object to being treated as such. Their normalization is 
independent of their scale and displacement:

dtϕ sd
* t( )ϕ sd t( )∫ = e− f
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We can therefore write normalized Morlet wavelets as:
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π4 e− f
2
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−
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4 +1

ϕ sd t( )
.

Resolution of unity
We can establish the completeness of the wavelet transform by very general methods, see (Kaiser 1994). But if we 
are only concerned with Morlet wavelets, we can take advantage of their specific character to give a less general but 
more immediate proof4 .
If we substitute the integral for 

 
ψ sd  in the integral for the inverse Morlet wavelet transform we get:
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This will be true if we have5:
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This looks like a familiar decomposition in terms of a set of states weighted by 
1
s2

. If we can show this directly, we 

will have shown we have a resolution of unity. To do this, we define the integral I:
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* ′t( )

−∞

∞

∫
.

We wish to show that this integral gives the δ function. We write the Morlet wavelets in terms of their Fourier 
transforms to get:
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Then we write the Fourier transforms of the wavelets in terms of the Fourier transform of the mother wavelet:

1
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We recognize the integral over d as a δ function in w and ′w :
dd
2π
exp i w − ′w( )d( )∫ = δ w − ′w( )

.
We use this hitherto disguised δ function to do the integral over ′w :

Morlet wavelets and quantum mechanics 
 
 John Ashmead

January 1, 2010
 
 6 of 17

4 We are using the word “proof” in a relaxed rather than a rigorous sense.
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I t, ′t( ) = 1
Cf

dsdw
s

e− iwteiw ′t ϕ̂ sw( )ϕ̂ * sw( )∫∫
.

We change the variable of integration to ′s = sw , then rename ′s  to s, break up the integral into two parts, with 
scale s positive and s negative, and flip the sense of s in the negative s plane:

I t, ′t( ) = 1
Cf

ds
s

dwe− iwteiw ′t ϕ̂ s( )ϕ̂ * s( )
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We identify the w integration as another δ function, one which can come outside of the integrals:

I t, ′t( ) = δ t − ′t( ) 2π
Cf

ds
s

ϕ̂ s( )ϕ̂ * s( ) + ϕ̂ −s( )ϕ̂ * −s( )( )
0
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∫
.

We recognize the remaining integral as Cf 2π so we have:

I t, ′t( ) = δ t − ′t( ) .
To show completeness we do not need the actual value of Cf, only that it is finite.
Calculation of admissibility constant
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Admissibility constant as a function of f
Now, we compute the actual value of the admissibility constant. By substituting the explicit form of the Fourier 
transform of the mother Morlet wavelet in the formula for the admissibility constant we get:

Cf = 2πe
− f 2 dw

w
e fw −1( )2 e−w2

−∞

∞

∫
.

For convenience, we define a new integral I:

I f( ) ≡ dw
w

ewf −1( )2 e−w2
−∞

∞

∫
.

For f equal to zero, I is zero by inspection. This is expected given that the original mother wavelet is zero when f is 
zero. As w goes to zero, the integrand goes as f2w so I is well-behaved in the small w limit. As w goes to ∞ the 
integral is obviously convergent; the exponential with argument quadratic in w ensures this. Therefore we can write I 
as:

I f( ) = d ′f
dI ′f( )
d ′f0

f

∫
.

The advantage of taking the derivative with respect to f is that it gets rid of the troubling factor of w in the 
denominator. The derivative of I with respect to f is:
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We integrate this with respect to f to get a pair of hypergeometric functions:
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Therefore we have for Cf:
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The F's are generalized hypergeometric functions. For f set to one we have:
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This can be checked by doing the original integral numerically.
For small f, Cf goes as:

lim
f→0

Cf → 2π f 2
.

For large f, Cf goes as:

lim
f→∞

Cf → exp − f 2( )
.

At this point we have an explicit form for the inverse Morlet transform, so have reached our objective. We now 
apply the Morlet wavelet transform to some interesting cases.
Gaussian test functions
Gaussian test functions (squeezed states) are the most important case:

ψ t( ) = 1
πσ 2

4 exp −iE t −τ( )− t −τ( )2
2σ 2

⎛

⎝⎜
⎞

⎠⎟ .
The Fourier transform of a Gaussian test function is:

ψ̂ w( ) = 1
π
σ 24 exp iwτ −

E − w( )2
2

σ 2⎛

⎝⎜
⎞

⎠⎟ .
Analysis
The Morlet wavelet transform of a Gaussian test function is:

 

ψ sd = d ′t
1
s

e
if ′t −d

s − exp − f 2

2
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
e
−
1
2

′t −d
s

⎛
⎝⎜

⎞
⎠⎟
2

1
πσ 2

4 exp −iE ′t −τ( )− ′t −τ( )2
2σ 2

⎛

⎝⎜
⎞

⎠⎟−∞

∞

∫
.

The integral is elementary:
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ψ sd = π
1/4 σ

s2 +σ 2 s 2 e
− i fs
s2 +σ 2

d−τ( )− 1
2
Es− f( )2σ 2
s2 +σ 2 − e

−
f 2

2 e
−
1
2
E2s2σ 2

s2 +σ 2
⎛

⎝
⎜

⎞

⎠
⎟ e

− iE σ 2

s2 +σ 2
d−τ( )− 1

2
d−τ( )2
s2 +σ 2

.

As expected, the leading term is greatest when the displacement d = τ and when the scale s = f
E

. When f is zero, 

the wavelet transform is zero.
Inverse Morlet wavelet transform
As H. Dumpty might have put it, the tricky part isn’t cutting the original wave function into parts, it’s putting the 
parts back together again6. We expect the original ψ will be given by:

 

ψ t( ) = 1
Cf

dsdd
s2

ϕ sd t( ) ψ sd
−∞

∞

∫
.

Without loss of generality, we simplify by assuming τ is zero:

ψ t( ) = 1
Cf

dsdd
s2

π 1/4 σ
s2 +σ 2 2 e

− if t−d
s

⎛
⎝⎜

⎞
⎠⎟ − e

−
f 2

2
⎛

⎝
⎜

⎞

⎠
⎟ e

−
1
2
t−d
s

⎛
⎝⎜

⎞
⎠⎟
2

× e
− i fs
s2 +σ 2

d− 1
2
Es− f( )2σ 2
s2 +σ 2 − e

−
f 2

2 e
−
1
2
E2s2σ 2

s2 +σ 2
⎛

⎝
⎜

⎞

⎠
⎟ e

− iE σ 2

s2 +σ 2
d− 1
2

d2

s2 +σ 2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

−∞

∞

∫

.
The integral over d is straightforward, as all the terms are Gaussians in d:

ψ t( ) = 1
Cf

ds
s
2π 3/4 σ

2s2 +σ 2

exp −
2E2s2σ 2 + 2 f 2 2s2 +σ 2( ) + 2iEσ 2t + t 2

2 2s2 +σ 2( )
⎛

⎝
⎜

⎞

⎠
⎟

−2exp −
3 f 2s2 + 2 f 2σ 2 − 2Efsσ 2 + 2E2s2σ 2 + 2ifst + 2iEσ 2t + t 2

2 2s2 +σ 2( )
⎛

⎝
⎜

⎞

⎠
⎟

+ exp −
2( f − Es)2σ 2 + 2i 2 fs + Eσ 2( )t + t 2

2 2s2 +σ 2( )
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

−∞

∞

∫

.
The limit as s goes to zero is:

2 e
− f 2 − iEt− t2

2σ 2 f 2π 3/4 1
σ

⎛
⎝⎜

⎞
⎠⎟
9 /2

σ 2 + E2σ 4 − 2iEσ 2t − t 2( )⎛

⎝
⎜

⎞

⎠
⎟ s +O s2⎡⎣ ⎤⎦

.
The limit as s goes to±∞  is:

±

2e
− f 2 − E0

2σ 2

2 1− 2e
f 2

4 + e f
2⎛

⎝
⎜

⎞

⎠
⎟ π

3/4 σ

s2
+O

1
s

⎡
⎣⎢

⎤
⎦⎥

3

.
Our integral is therefore neither singular at the origin nor divergent at infinity. Of course, we expect this since we are 
guaranteed by the decomposition theorem that this integral will give the original Gaussian. To show explicitly we 
get the original Gaussian we take the Fourier transform of both sides, with respect to t. The simplification is 
dramatic and most of the factors come outside of the integral over s. On the right we get:

1
Cf

2π exp − f 2( ) σ 2

π
4 exp −

E − w( )2σ 2

2
⎛

⎝⎜
⎞

⎠⎟
ds
s
e− s

2w2 −1+ e fsw( )2
−∞

∞

∫
.
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6 For H. Dumpty’s role in the analysis of the Stern-Gerlach experiment see Englert, B.-G., J. Schwinger, et al. (1988). "Is Spin 
Coherence Like Humpty-Dumpty? I. Simplified Treatment." Found. Phys. 18: 1045--1056, Schwinger, J., M. O. Scully, et al. 
(1988). "Spin coherence and Humpty-Dumpty. II." Z. Phys. D 10: 135, Scully, M. O., B.-G. Englert, et al. (1989). "Spin 
coherence and Humpty-Dumpty. III. The effects of observation." Phys. Rev. A 40: 1775--1784.



We change variables ′s = sw  and note the integral is essentially the admissibility constant. Factors cancel giving:

σ 2

π
4 exp −

E − w( )2σ 2

2
⎛

⎝⎜
⎞

⎠⎟
1
Cf

2π exp − f 2( ) d ′s
′s
2e− ′s 2 −1+ e f ′s( )2

−∞

∞

∫
⎛

⎝⎜
⎞

⎠⎟
=

σ 2

π
4 exp −

E − w( )2σ 2

2
⎛

⎝⎜
⎞

⎠⎟
= ψ̂ w( )

.
Other Applications
We will compute the Morlet wavelet transforms of δ functions, plane waves, and – to achieve maximum self-
referentiality – a Morlet wavelet itself.
δ functions
Since the δ function is not a square-integrable function, we are not guaranteed the wavelet transform will work. We 
therefore write the δ function as a limit of Gaussian test functions:

δ x( ) = lim
σ→0+

1
2πσ 2

exp −
x2

2σ 2

⎛
⎝⎜

⎞
⎠⎟ .

This lets us use the result for a Gaussian test function:

 

δ sd τ( ) = lim
σ→0+

1
s2 +σ 2 s e

− i fs
s2 +σ 2

d−τ( )− 1
2

f 2σ 2

s2 +σ 2 − e
−
f 2

2
⎛

⎝
⎜

⎞

⎠
⎟ e

−
1
2
d−τ( )2

s2 +σ 2 .

Taking the limit as σ goes to zero:

 

δ sd τ( ) = 1
s

e
− if d−τ

s
⎛
⎝⎜

⎞
⎠⎟ − e

−
f 2

2
⎛

⎝
⎜

⎞

⎠
⎟ e

−
1
2
d−τ( )2

s2 .

This is itself a Morlet wavelet:

 
δ sd τ( ) = ϕ sd

* τ( ) .

We get the same result by computing the Morlet wavelet transform directly:

 

δ sd τ( ) = d ′t ϕ sd
* ′t( )δ ′t − τ( )

−∞

∞

∫ =
1
s

e
if τ −d

s − exp −
f 2

2
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
e
−
1
2

τ −d
s

⎛
⎝⎜

⎞
⎠⎟
2

.

Since the demonstration of the resolution of unity only applies to square-integrable functions, we verify the inverse 
transform. We want to show:

δ t − τ( ) = 1
Cf

dsdd
s2

ϕ sd t( )ϕ sd
*( ) τ( )

−∞

∞

∫
.

However this is just what we showed when we computed the admissibility constant, so we are done.
Plane waves
The Morlet wave transform of a plane wave:

φ t( ) ≡ 1
2π
exp −iEt( )

 is given by:

 

φsd E( ) = dt 1
s

e
if t−d

s − exp −
f 2

2
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
e
−
1
2

t−d
s

⎛
⎝⎜

⎞
⎠⎟
2

1
2π
exp −iEt( )∫ .

We do the integral, discovering we get the Fourier transform of a Morlet wavelet:

 
φsd E( ) = ϕ̂ sd

*( ) E( ) .

For the inverse transform to be valid we require:
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φ t( ) = 1
Cf

dsdd
s2

ϕ sd t( )ϕ̂ sd
*( ) E( )∫ .

To show this, we take the Fourier transform of each side. On the left side we get:
δ w − E( ) .

On the right side we have (writing the Fourier transforms of the Morlet wavelets in terms of the Fourier transforms 
of their mothers):

1
Cf

dsdd
s2

s exp idw( )ϕ̂ sw( ) s exp −idE( )ϕ̂ * sE( )∫
.

The integral over d is a δ function, which we pull out of the integral, leaving the now familiar admissibility constant 
behind:

2π
Cf

ds
s
ϕ̂ sw( )ϕ̂ * sE( )∫ δ w − E( )→ 2π

Cf

ds
s
ϕ̂ sw( )ϕ̂ * sw( )∫ δ w − E( ) = δ w − E( )

.
Morlet wavelet transform of a Morlet wavelet:
We look at the Morlet wavelet transform of a Morlet wavelet. We use a normalized Morlet wavelet, with σ replacing 
s and E replacing f:

ψσE t( ) ≡ NσE
1

πσ 2
4 e− iE t−τ( ) − e

−
σ 2E2

2
⎛

⎝
⎜

⎞

⎠
⎟ e

−
1
2

t−τ
σ

⎛
⎝⎜

⎞
⎠⎟
2

NσE ≡
π4

e−σ
2E2 − 2e

−
3σ 2E2

4 +1

.

The Morlet wavelet transform is given by:

 

ψ sd
σE( ) = d ′t ϕ sd

* t( )
−∞

∞

∫ ψσE t( )
.

To apply the results for Gaussian test functions break out the incoming Morlet wavelet into its two Gaussian test 
functions; read off the results:

 

ψ sd
σE( ) =

2π σ
s2 +σ 2 s

e−σ
2E2 − 2e

−
3σ 2E2

4 +1

e
− i fs
s2 +σ 2

d−τ( )− 1
2
Es− f( )2 σ 2
s2 +σ 2 − e

−
f 2

2 e
−
1
2
E2 s2σ 2

s2 +σ 2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
e
− iE σ 2

s2 +σ 2
d−τ( )

− e
− i fs
s2 +σ 2

d−τ( )− 1
2

f 2σ 2

s2 +σ 2
−
σ 2E2

2 − e
−
f 2

2
−
σ 2E2

2
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

e
−
1
2
d−τ( )2

s2 +σ 2

.
Covariant Morlet wavelets
Strategy
We would like to generalize Morlet wavelets to four dimensions (one time, three space) in a way that is manifestly 
covariant. We will do this by taking the direct product of Morlet wavelets in time and the three space dimensions. 
The natural generalization of the Gaussian part of the one-dimensional Morlet wavelet is:

exp −
x2

2
⎛
⎝⎜

⎞
⎠⎟
→ exp −

xµx
µ

2
⎛

⎝⎜
⎞

⎠⎟
= exp t 2

2
−
x2 + y2 + z2

2
⎛
⎝⎜

⎞
⎠⎟

.
This clearly diverges in t. We have to fix this without losing manifest covariance.
We will assume we start in a specific frame M. We will define the four-dimensional Morlet wavelet as the product of 
four one-dimensional Morlet wavelets, then write our results in a way that is Lorentz-invariant.
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Construction
We take the four-dimensional mother Morlet wavelet as the direct product of four one-dimensional mother Morlet 
wavelets, one for each coordinate:

ϕ t( )→ϕ t( )ϕ x( )ϕ y( )ϕ x( ) .
We write the mother Morlet wavelet out explicitly:

ϕ t, x, y, z( ) = exp −if0t( ) − exp −
f0
2

2
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
exp if1x( ) − exp −

f1
2

2
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
exp if2y( ) − exp −

f2
2

2
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
exp if3z( ) − exp −

f3
2

2
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

× exp −
t 2 + x2 + y2 + z2

2
⎛
⎝⎜

⎞
⎠⎟ .

By scaling and displacing each component separately we get:

ϕ sd t, x, y, z( ) = 1
s0s1s2s3

exp −if0
t − d0
s0

⎛
⎝⎜

⎞
⎠⎟
− exp −

f0
2

2
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
exp if1

x − d1
s1

⎛
⎝⎜

⎞
⎠⎟
− exp −

f1
2

2
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

× exp if2
y − d2
s2

⎛
⎝⎜

⎞
⎠⎟
− exp −

f2
2

2
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
exp if3

z − d3
s3

⎛
⎝⎜

⎞
⎠⎟
− exp −

f3
2

2
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

× exp −
1
2

t − d0
s0

⎛
⎝⎜

⎞
⎠⎟

2

+
x − d1
s1

⎛
⎝⎜

⎞
⎠⎟

2

+
y − d2
s2

⎛
⎝⎜

⎞
⎠⎟

2

+
z − d3
s3

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.
The Fourier transform of the mother Morlet wavelet is:

ϕ̂ E, px , py , pz( ) = exp f0E( ) −1( ) exp f1px( ) −1( ) exp f2 py( ) −1( ) exp f3pz( ) −1( )
× exp −

f0
2 + f1

2 + f2
2 + f3

2

2
−
E2 + px

2 + py
2 + pz

2

2
⎛

⎝⎜
⎞

⎠⎟ .
The Fourier transform of the general Morlet wavelet is:

ϕ̂ sd E, px , py , pz( ) = s0s1s2s3 exp i d0E − d1px − d2 py − d3pz( )( )
× exp s0 f0E( ) −1( ) exp s1 f1px( ) −1( ) exp s2 f2 py( ) −1( ) exp s3 f3pz( ) −1( )
× exp −

f0
2 + f1

2 + f2
2 + f3

2

2
−
s0
2E2 + s1

2 px
2 + s2

2 py
2 + s3

2 pz
2

2
⎛

⎝⎜
⎞

⎠⎟ .
Now we have to promote various non-covariant bits to covariant bits.
The scale factors enter into the inverse Morlet integral in a slightly awkward way:

ds0
s0
2

ds1
s1
2

ds2
s2
2

ds3
s3
2∫

.
The simplest approach to this is to treat the four scale factors as so many scalars.
The obvious choices for the displacement d and the reference frequency f are to treat them as four vectors. For the 
displacement a single four vector will suffice:

d = d0 ,d1,d2 ,d3( ) .
We will need one four vector for each reference frequency:

F 0( ) ≡ f0 ,0,0,0( )
F 1( ) ≡ 0, f1,0,0( )
F 2( ) ≡ 0,0, f2 ,0( )
F 3( ) ≡ 0,0,0, f3( ) .

For convenience, we define the sum over all four F’s as:
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F ≡ F n( )

n=0

3

∑ = f0 , f1, f2 , f3( )
.

This is also a four vector. Note that the raw frequencies f0, f1, f2, f3 are themselves scalars since they are defined with 
respect to the specific frame M.
To represent the sums as Lorentz invariants we define a set of second rank tensors (with their inverses):

Σµ
n( )ν ≡

s0
−n 0 0 0

0 −s1
−n 0 0

0 0 −s2
−n 0

0 0 0 −s3
−n

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

, 1
Σ n( )

⎛
⎝⎜

⎞
⎠⎟ µ

ν

=

s0
n 0 0 0

0 −s1
n 0 0

0 0 −s2
n 0

0 0 0 −s3
n

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

.

The first three – all we need – are:

Σµ
0( )ν ≡

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

,Σµ
1( )ν ≡

1
s0

0 0 0

0 −
1
s1

0 0

0 0 −
1
s2

0

0 0 0 −
1
s3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

,Σµ
2( )ν ≡

1
s0
2 0 0 0

0 −
1
s1
2 0 0

0 0 −
1
s2
2 0

0 0 0 −
1
s3
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

.

By having the signature for each of these tensors be 1,−1,−1,−1( ) we are ensuring that our Gaussian integrals will 

converge.
Written with these definitions the mother Morlet wavelet is:

ϕ xµ( ) = exp −iF n( )µxµ( ) − exp −
F n( )µFµ
2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

n=0

3

∏
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
exp −xµ Σµ

0( )ν

2
xν

⎛

⎝
⎜

⎞

⎠
⎟

and the general Morlet wavelet is:

ϕΣd xµ( ) = det Σ 1( )( ) exp −iF n( )µΣµ
0( )ϖΣϖ

1( )ν xν − dν( )( ) − exp −
F n( )µΣµ

0( )νFν
n( )

2
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

n=0

3

∏
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
exp − xµ − dµ( ) Σµ

2( )ν

2
xν − dν( )

⎛

⎝
⎜

⎞

⎠
⎟

.

While we have worked this out in frame M, as it is written in terms of covariant quantities it is valid in all frames. 
We have therefore guaranteed Lorentz covariance of the Morlet wavelets.
Note that the choice of frame defines a set of Morlet wavelets; with each frame there is a distinct set of Morlet 
wavelets. If we have multiple frames we wish to work with we will need to tag each Morlet wavelet with the frame 
it comes from. Usually there is an obvious choice of frame, i.e. the center-of-mass frame.
With these definitions, the Fourier transform of the mother Morlet wavelet is:

ϕ̂ p( ) = exp F n( ) 1
Σ 0( ) p

⎛
⎝⎜

⎞
⎠⎟
−1⎛

⎝⎜
⎞
⎠⎟n=0

3

∏⎛⎝⎜
⎞
⎠⎟
exp −F

1
2Σ 0( ) F −

1
2
p

1
2Σ 0( ) p

⎛
⎝⎜

⎞
⎠⎟ .

The Fourier transform of the general Morlet wavelet is:

ϕ̂Σd p( ) = 1
det Σ 1( )( ) exp ipd( ) exp F n( ) 1

Σ 1( ) p
⎛
⎝⎜

⎞
⎠⎟
−1⎛

⎝⎜
⎞
⎠⎟n=0

3

∏⎛⎝⎜
⎞
⎠⎟
exp −F

1
2Σ 0( ) F −

1
2
p

1
2Σ 2( ) p

⎛
⎝⎜

⎞
⎠⎟

.
Resolution of unity
Any square integrable function ψ t, x, y, z( )may be expressed as a sum over these Morlet wavelets. The covariant 

Morlet wavelet transform is given by:
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ψ Σd = d4xϕΣd
* x( )ψ x( )

−∞

∞

∫
.

And the inverse is given by:

 

ψ x( ) = 1
Cf0

Cf1
Cf2

Cf3

dsn
sn

2
n=0

3

∏
⎛

⎝
⎜

⎞

⎠
⎟ d4 dϕΣd x( ) ψ Σd

−∞

∞

∫
−∞

∞

∫
.

The resolution of unity and the values of the constants of admissibility follow directly from the results for one 
dimension.
The solutions for Gaussian test functions, δ functions, and plane waves are merely the direct products of the 
corresponding one-dimensional wave functions.
We have therefore reached our goal: to generalize the Morlet wavelet transform to four dimensions in a way which 
is manifestly covariant.
Alternative approaches
Alternative (and more sophisticated) lines of attack are possible. For instance in (Antoine, Murenzi et al. 2004) or in 
(Perel and Sidorenko 2007) two dimensional wavelets are generated from the mother wavelet by using 
displacements, rotations (in the x-y plane), and a single scale factor:

 

ϕRds x, y( ) = 1
s
ϕ mom( ) R ⋅

r −

d( )

s

⎛

⎝
⎜

⎞

⎠
⎟

where R is a rotation matrix (in two dimensions).
By analogy, we could generalize one-dimensional wavelets to four dimensions by using displacements d, Lorentz 
transformations Λ, and a single dilation s:

ϕΛds xµ( ) = 1
s2
ϕ mom( ) 1

s
Λµ

ν xν − dν( )⎛
⎝⎜

⎞
⎠⎟ .

But establishing convergence, verifying the resolution of unity, and computing the admissibility constant for these 
wavelets would be a new project. Our immediate requirement is merely to establish that there is at least one set of 
covariant Morlet wavelets.
Summary
The naive use of plane wave/δ function decomposition can create artificial difficulties in the analysis of foundational 
questions of quantum mechanics7. 
The use of Morlet wavelet decomposition avoids these difficulties. 
With the explicit calculation of the admissibility constant and the demonstration of covariant Morlet wavelets, we 
have eliminated two of the barriers to full use of this powerful technology for the analysis of foundational questions 
in quantum mechanics.
Conventions for the Fourier transform
For the Fourier transform from time to frequency we are using:

f̂ w( ) ≡ 1
2π

dt exp iwt( ) f t( )
−∞

∞

∫
with inverse Fourier transform:

f t( ) = 1
2π

dwexp −iwt( ) f̂ w( )
−∞

∞

∫ .

In the Fourier transform in four dimensions time and space enter with opposite signs:
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7 That the use of unlocalized wave functions creates artificial difficulties suggests that the localization of the wave function in 
time and frequency/space and momentum should be regarded as a fundamental attribute.



 

f̂ w,

k( ) ≡ 1

4π 2 dt d x exp iwt − i

k ⋅ x( ) f t, x( )

−∞

∞

∫
with inverse Fourier transform:

 

f t, x( ) = 1
4π 2 dwd


k exp −iwt + i


k ⋅ x( ) f̂ w, k( )

−∞

∞

∫ .
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